
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

TreeStructor: Forest Reconstruction with Neural Ranking
Xiaochen Zhou, Bosheng Li, Bedrich Benes IEEE Senior Member,

Ayman Habib IEEE Member, Songlin Fei, Jinyuan Shao, Sören Pirk

Abstract—We introduce TreeStructor, a novel approach for
isolating and reconstructing forest trees. The key novelty is a deep
neural model that uses neural ranking to assign pre-generated
connectable 3D geometries to a point cloud. TreeStructor is
trained on a large set of synthetically generated point clouds.
The input to our method is a forest point cloud (FPC) that we
first decompose into point clouds that approximately represent
trees (TPC) and then into point clouds that represent their
parts (PPC). We use a point cloud encoder-decoder to compute
embedding vectors that retrieve the best-fitting surface mesh
for each PPC from a large set of predefined branch parts.
Finally, the retrieved meshes are connected and oriented to
obtain individual surface meshes of all trees represented by
the FPC. We qualitatively and quantitatively validate that our
method can reconstruct forest trees with unprecedented accuracy
and visual fidelity. TreeStructor outperforms the state-of-the-art
reconstruction method for around 6% on quantitative metrics
and 12% less error compared with QSM on low-quality scanned
data. The code and data are available at http://xxx.com

Index Terms—Neural Networks, Forest Modeling, 3D Recon-
struction, and Remote Sensing

I. INTRODUCTION

LASER scanners are becoming commodity hardware,
which makes point cloud data widely available. Point

clouds are unstructured and do not include topological in-
formation. Thus, an important task is their reconstruction
into other representations, the most prevalent of which are
polygonal meshes. This is an ill-posed problem, and some
assumptions are often made, e.g., reconstructing man-made
objects assumes smooth surfaces and symmetries [1], [2].
Reconstructing noisy data, and, in particular, vegetation, poses
unique challenges. For one, trees and other plants often grow in
proximity, and their canopies overlap. This makes distinguish-
ing them as separate objects (instance segmentation) difficult,
and single-tree reconstruction algorithms cannot be readily
applied. Second, captured point clouds of forests suffer from
intra- and inter-plant occlusion, leading to incomplete point
clouds. Multiple-pass capture can be applied to address this
issue [3]. Finally, while laser scanners have become more
accurate, their resolution still does not capture all the details.
However, the increasing precision shifts the error to a higher
signal frequency, i.e., to thinner branches and leaves.

Several methods address the reconstruction of 3D vegetation
from point clouds, but many operate under strict assumptions
due to the challenges mentioned above. For example, some
expect clean point clouds of isolated trees [4], high point

X. Zhou, B. Li, and B. Benes were with the Department of Computer
Science, Purdue University, West Lafayette, IN, 47907.

S. Fei was with Department of Forestry and Natural Resources, Purdue
University, West Lafayette, IN, 47907.

S. Pirk was with the Department of Computer Science, Kiel University,
Kiel, 24143

density [5], or branches are assumed to be simple conical
elements [6]. These assumptions make it difficult to scale to
dense foliage or trees that overlap. Also, they do not work
well with low-density data. Other methods extract only tree
skeletons [7], [8], [9]. Tree skeletons can be used to extract
important phenological traits, such as branching angles and
the number of branches at different ordering levels. However,
they cannot be used to extract volumetric information, such
as diameter at breast height (DBH). An important task is the
point cloud segmentation that assigns a unique identifier to
each point as to which branch it belongs [8], [10]. These
methods then approximate the canopy in tandem with proce-
dural modeling techniques [11]. However, the segmentation
or skeletonization requires clear branching structures and
complete LiDAR scans, which cannot be easily achieved using
the existing LiDAR scanned data, such as airborne and TLS.
Only a few methods focus on multiple trees. They often do so
only for tree counting [4], [12] or to extract some information
from the forest, such as DBH.

This paper introduces TreeStructor, a novel approach to
reconstructing tree models from point clouds of forests. We
show that our method works with data from TLS, airborne
UAVs, or backpack scanning. The key idea of our approach is
to find branch parts from a dataset of predefined connectable
branch meshes. As processing the entire forest point cloud
(FPC) is not feasible, and instance segmentation algorithms
fail, we aim to split the FPC into a set of tree part point
clouds (PPC). However, decomposing the FPC into point
clouds of individual parts (PPC) is challenging, so we first
compute tree part point clouds (TPC). Each TPC contains
one trunk and approximately represents one tree. It may also
be incomplete and contain branches of other trees. We then
further decompose each TPC into a set of PPC’s – point clouds
representing branch parts.

We perform a neural ranking to retrieve the best-fitting
branch mesh for a PPC. We build a synthetic dataset of 4M
branch meshes, each with clearly defined ends, allowing them
to connect easily. We store the meshes and their corresponding
PPCs to capture various branch shapes. We train a point
cloud autoencoder on the synthetically generated PPCs to
learn an embedding space of branch parts. With the trained
autoencoder, we can encode a PPC to an embedding vector
stored along with the branch graph and the surface mesh of a
branch part. Encoding all PPCs allows us to retrieve branch
parts based on their embedding vector.

We embed the PPC of a real branch to retrieve its nearest
neighbors of synthetic tree parts in the embedding space. The
neighbors are the geometrically most similar branch parts from
the dataset. To reconstruct the input FPC into tree meshes, we
perform neural ranking for all tree point clouds (PPC)s of all

http://xxx.com

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

Fig. 1. The TreeStructor framework reconstructs meshes of individual tree models from complex forest point clouds with tree part neural ranking. An input
point cloud (top), its reconstructed branching structures without leaves (middle), and the fully reconstructed forest consisting of individual tree meshes with
leaves (bottom). The inset on the right shows a part of the forest from a different angle.

tree point clouds (TPC). The retrieved branch parts are then
connected based on their geometric properties.

TreeStructor reconstructs trees from large, unstructured for-
est point clouds from various sources to showcase our method
(see Fig. 1). The experiments indicate that TreeStructor quali-
tatively and quantitatively outperforms existing methods for
single-tree tree reconstruction. Our contributions are (1) A
novel approach to decomposing forest point clouds into point
cloud parts; (2) An encoder-decoder neural network to orga-
nize an embedding space to support the ranking of nearest
neighbors of connectable forest parts, allowing us to obtain
the best fitting set of meshes from a synthetically generated
dataset of branch segments; (3) An algorithm for connecting
and consolidating a set of tree part meshes into tree meshes.

II. RELATED WORK

Tree 3D modeling and reconstruction. Generative vegetation
models date back to 1968 when L-systems were introduced
to describe cell subdivision [13] mathematically. L-systems
were extended to allow for 3D branching [14]. Nowadays, L-
systems are a mathematical formalism capable of simulating
plant signaling [15] and even competition for space [16].
A disadvantage of L-systems is that they are difficult to
describe, so inverse procedural approaches attempt to learn
L-systems from data [17], [18], [19]. Recent approaches
to vegetation use simulation engines to account for space
occupancy [20], dynamic growth [21], [22], wind [23], wilt-
ing [24], root growth [25], climatic gradients [26], volumetric
data [27], fire [28], [29], or even plant ecosystems [30], [31],

[32], [33], [34]. Generative models for plants often do not
represent all variations present in real plants, so reconstruction
algorithms generate tree models from acquired data. Image-
based approaches extract visual hulls [35], volumetric spaces
by image-to-image translation [36], or attempt to use single
images [37], [38], [39] or multiple images [40] to generate 3D
models. Image-based reconstruction cannot correctly estimate
parts that are not directly visible, which can be partially
alleviated by acquiring a video around the plant [41]. So-called
inverse procedural methods attempt to find the parameters
of the developmental models and reconstruct the plant by
regrowing them [42] that leads to an approximate model,
but capable of environmental adaptation and recent inverse
methods encode plant shape as neural model [43], [17]. Our
approach builds on the related work in that we use synthetic
tree and forest models to build the training dataset of tree
parts that are then detected in real point cloud data. Moreover,
our approach is related to the work of Xie et al. [44], who
used real tree blocks to enhance the appearance of 3D tree
models. TreeStructor does not require real tree parts as it
uses synthetically generated branching structures specifically
designed for connecting. Moreover, our method attempts to
reconstruct multiple trees in a forest.

Point Cloud Vegetation Reconstruction. A key inspiration
for our approach is the recent works Uy et al. [45] that extracts
cylindrical parts of CAD models from point clouds and [8],
[44], [46] that attempt to divide the 3D geometry into smaller
parts. Liu et al. [8] provides tree part instances only for cylin-
ders and bifurcations for a single tree, and Xie et al. [44] used

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

carefully designed tree parts from the real world and modeled
new geometries. TreeStructor reconstruct forests instead of
single trees, where connecting parts from individual trees is an
unsolved problem. Moreover, our approach leverages a learned
embedding space to find and connect the closest tree parts to
represent a complete tree model.

Vegetation point cloud reconstruction has primarily ad-
dressed small or single plants and leaves [47], [48], [49] in
controlled environments [50]. Our approach works on large,
complex point clouds that store many large trees with consid-
erable noise. The most common way to reconstruct individual
trees is to find their skeleton [7], [9], [51], [52], [53] (see also
the recent review [54]), circles [6], cylinders [55], [56], [57]
or other parts [58], [59], [60] and then complete the detected
geometric blocks into a 3D model. While skeletons provide
important phenotypic traits, such as branching angle or branch
length, they do not provide volumetric information or branch
surface.

Forest reconstruction from point clouds is an open prob-
lem. Current methods attempt to count trees in forests from
terrestrial LiDAR scans (TLS) [4], segment point clouds into
tree instances [61], detect trees in urban forests and street data
from TLS or car-mounted LiDAR [62], [63], [64], UAVs [65],
[66], or segment the forest into foliage and wood [5], [67],
[68], [69], [70]. Recent approaches also extract specific fea-
tures from Lidar data, such as tree height [71], height from
an interferometric synthetic aperture radar [72], [73], forest
age [74], or species detection [75]. Hu et al. [76] reconstructed
small clusters of separated trees captured from airborne UAVs
into voxels and skeleton, which has also been captured by
a recent work of [77]. The previous work addresses only
individual trees with clean points and fails on large and
occluded data. They cannot be used on forest datasets, as they
cannot disentangle the individual trees. Our method provides
a topological forest data structure, where each tree model is
also a mathematical tree.

Furthermore, precise metric measurement for individual
trees is also a key requirement for forest reconstruction.
TreeQSM [78] addresses this requirement by decomposing
trees into cylinders and optimizing these cylinders to fit the
point clouds. Similarly, Du et al. [79] introduce AdTree, a
method that generates tree models by first constructing a
skeleton and then refining the structure by fitting cylinders to
the point clouds. While these methods excel in achieving high
metric precision, they often suffer from visual artifacts and
twisting, resulting in models that are less visually satisfying.
Our method can generate high-quality visual results with high
measurement accuracy.

III. OVERVIEW

TreeStructor (Fig. 2) uses self-supervised learning to orga-
nize an embedding space of tree parts by using the correspond-
ing point clouds (Fig. 2 c-d). We generate a large dataset of
synthetic tree parts with their corresponding point clouds, and
we use it to learn an embedding space that is used to perform
neural ranking. During the reconstruction, we use parts of a
real input point cloud to find its closest synthetic point cloud

as the nearest neighbor in the learned embedding space – a
branch that resembles the geometric structure of the input.
Each synthetic point cloud is associated with its branch mesh,
which is used for reconstruction (see Fig. 6 for more detailed
visualization of the real forest reconstruction process).

Forest point cloud (FPC) decomposition: Neural ranking
is performed on small point clouds. We devised a pipeline
that decomposes the large FPC into a set of tree point clouds
(TPCs) (Fig. 2b), which are then decomposed into a collection
of tree part point clouds (PPCs) (Fig. 2 c.g,f). We segment
FPCs into the ground and individual trees using state-of-the-
art point cloud instance segmentation. While this does not
provide reliable results for complex canopies (see Fig. 3), our
algorithm does not require precise tree segmentation, as the
tree topology and geometry are recovered later in the pipeline.
However, the segmentation requires that we reliably identify
the position of the trunk (root) of a tree. The TPCs are then
segmented into smaller PPCs.

Training the neural ranking model (Fig.2, top row): We use
the ecosystem model [30] to generate synthetic forests (a),
which are segmented into tree instances (b) and synthetic tree
parts (c). Each synthetically generated tree part is represented
as a point cloud, a branch graph, and additional attributes
used to describe the branch mesh, such as an end normal
vector and the cap used to connect the parts. This provides
a large dataset of tree parts. We then train a point cloud auto-
encoder network [79] to reconstruct point clouds of branches
autoregressively. The embedding vector of the trained auto-
encoder (d) is used to retrieve tree parts (represented as point
clouds associated with meshes and graphs) structurally similar
to the input PPC. To reconstruct a real branch, we encode
the point cloud with the encoder of our network and perform
a lookup into the embedding space to retrieve the top n
nearest neighbors of the encoded synthetic tree parts. It is
important to note that finding matching branch parts does not
significantly depend on the tree species. The reconstruction
will provide correct results if enough tree parts with a wide
variety of branch shapes are provided for the lookup. The
forest simulation provides a wide variety of shapes, which
accounts for tree competition for resources, light, and gravity.

Forest reconstruction (Fig.2, bottom row): The input to
TreeStructor is a large unstructured FPC (Fig. 2 e), and the
output is set of tree meshes (h). We decompose the real FPC
(e) into the PPCs (Fig. 2 f) in the same way the synthetic point
clouds are decomposed, i.e., breaking the trees into smaller
pieces. We then use the trained auto-encoder (d) to compute
the embedding vector of the real points to fetch the tree parts
whose point clouds best fit the input ones. This obtains the
associated tree part meshes. The meshes are positioned into the
point clouds using a stochastic gradient-based optimization.
The tree part meshes also store their local topology as graphs.
Once they are identified and positioned, the input forest is
represented as a collection of disconnected branch graphs and
unused points (Fig. 2 g). The last step connects the detected
tree part meshes into tree meshes (Fig. 2 h). Leaves are
procedurally generated and added to small branches and twigs.
The output of TreeStructor is a collection of tree meshes
matching the input FPC.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

Fig. 2. Overview: During the training (top row a-d), we use a synthetic model of a forest (a) to extract pairs of point clouds and tree meshes (c). We first
find tree instances (b) and then smaller tree part point clouds and meshes (c). This creates a large dataset organized by training an encoder-decoder neural
network. The network (d) finds the most suitable set of tree geometries (meshes) for a given point cloud. During the reconstruction (bottom row e-h), we also
find the tree instances (b) and tree point clouds (f). The previously trained neural ranking network (d) is then applied to the branch point clouds to find the
corresponding set of branch meshes in the embedding space. Each set is positioned in the 3D space, and the used points are removed, resulting in tree part
meshes and unused points (g). We then process the unused points to connect the detected meshes into tree graphs and complete the forest mesh geometry (h).

IV. POINT CLOUD PROCESSING

Synthetic Forests: We use the method of [30] to generate
synthetic forests to provide data to train the point auto-
encoder. We create a large database of synthetic tree part
meshes and their corresponding PPC (about 4M). The in-
put to this step is a synthetic forest, and the output is a
set of tree part meshes that are virtually scanned, and the
corresponding PPC are generated. We follow the LiDAR
scanning simulation [80] and simulate the understory mobile
laser scanning (handheld or backpack-mounted) to cover a
larger forest area and reduce occlusion. A moving laser is
positioned 1.4 meters above the ground and emits laser rays.

Skeletal graph

When these rays strike an object, we
capture the 3D data of that point
at contact. The synthetic tree part
meshes also store additional infor-
mation to connect the parts later. In
particular, the corresponding topology is stored as a skeletal
graph (shown in red in the associated figure), and the endpoints
are stored as discs with normal vectors.

Real Forests: Real forests are also decomposed into PPC.
However, contrary to the synthetic forest used for training, the
goal is to use the neural ranking to retrieve the best tree part
mesh to input PPC and connect them later into complete tree
meshes.

We decompose the real FPC using the same algorithm used
for the synthetic FPC that decomposes them into PPCs. In
the first step, we take the input FPC and convert it into TPCs
using the state-of-the-art tree instance segmentation. Although
the existing algorithms often provide erroneous results (see
Fig. 3), we can still use them because misplaced tree meshes
will be correctly connected in the later stages of our algorithm.
The TPCs are then segmented into smaller PPC.

The input to our framework is a large unstructured FPC
PF of points, where each point is only associated with a 3D
position. We decompose PF into PPC in two steps: first, we
find the instances of trees that we call TPCs, then split each
tree into PPC.

A. Forest Point Cloud to Tree Point Clouds (FPC→TPC)

We use the state-of-the-art point cloud instance segmenta-
tion OneFromer3D [81] and SoftGroup [82] to segment the
forest into the ground and individual trees. The goal is not

Fig. 3. The state-of-the-art point cloud instance segmentation does not
correctly isolate single trees, making it difficult to reconstruct forests by
single-tree reconstruction approaches.

for precise segmentation because tree parts will be connected
in the last step of the algorithm. We also tested the state-of-
the-art pipeline for Cloth Simulation Filters (CSF) [83], but
the SoftGroup outperforms CSF on steep terrain and noisy
scanned data. Although we experimented with other clustering
algorithms, such as the DBSCAN, the state-of-the-art methods
better restore the geometrical and topological information in
the segmented individuals.

Root detection: Our algorithm requires the tree to have
correctly detected the lowest part of the trunk that we call
its root. The tree instance segmentation tends to over- and
under-segment the data, leading to trees having either none or
multiple roots. To ensure precisely one root, we first obtain
all roots from the FPC generated by raising the segmented
ground for h (h = 0.1m in our work) and clustering the point
cloud beneath the ground by DBSCAN. Then, we compute the
geometric center of the tree and assign each tree to a root with
the closest L2 distance. This guarantees that the forest will be
decomposed into trees with only one root. Note again that we
segment the forest into individual trees approximately. Even if
some parts are assigned incorrectly, they will be reconnected
by the algorithm from Sect. VI.

B. Tree Point Clouds to Part Point Clouds (TPC→PPC)

We use peak density clustering (PDC) [84] to decompose
the TPCs into PPCs. The input for the PDC is an individual

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

Fig. 4. (a) Segmentation of a TPC to PPCs uses peak density clustering with
an adaptive threshold to assign a unique ID to points belonging to the same
tree part cluster. (b) Examples of individual tree parts representations as point
clouds, corresponding meshes, and foliage, if they exist.

TPC P , a threshold for the neighbor range r, and the center
of the tree root proot. We first compute the density fdensity of
each point p as a weighted sum of the distances of all points
within a threshold

fdensity(p, P, r) =

i∑
pi∈P

max

(
0, 1− dist(p, pi)

r

)
, (1)

where dist is the L2 distance between two points. We find
the closest point with a larger density in the point cloud for
each point p and add the vertices and edge to a graph G.
After G is constructed, we remove all edges larger than the
threshold r related to the radius of the main trunk, which
will decompose the graph into several subgraphs with points
considered a cluster.

The threshold value for the neighbor range r severely
impacts the clustering. Setting the value too small will separate
tree parts into clusters that should remain connected, while
larger values lead to only a few clusters of several smaller
branches. Thus, we introduce an adaptive threshold function
fadp that changes the neighbor threshold for PPC segmenta-
tion

fadp(p, r, proot) = r

1 +

√
dist(p, proot)

distmax

−1

, (2)

where distmax denotes the maximum distance from all the
points to the root point. Additionally, we define another density
threshold to filter the clusters with fewer point numbers, which
improves the robustness of the clustering when encountering
noisy inputs that frequently occur in the forest data. The
pseudo-code of our peak density algorithm is provided in the
Appendix as Alg. 3. The resulting branch part instances are
shown in Fig. 4 a).

V. NEURAL RANKING

The main goal of our approach is to retrieve branch parts
represented as skeletal graphs and meshes from input point

Fig. 5. The point cloud embedding network. An R-CNN backbone extracts
a feature vector of branch point clouds concatenated with a position feature
for where the branch part is located in the tree. We train the network to
reconstruct the branch point cloud, classify foliage branches, and predict the
direction of a branch and its radius. Together, this ensures that the learned
embedding encodes geometric properties of the branch point cloud to enable
neural ranking of the branch parts.

clouds of branch parts. We train a point-based neural network
to perform this retrieval-based reconstruction that projects
branch point clouds into an embedding space. The idea is
to embed a large collection of diverse branch parts, where
each branch part is represented as a point cloud along with
the skeletal graph and additional attributes to reconstruct and
connect the surface meshes of the branch part.

A. Point Cloud Embedding Network

Our point cloud embedding network (see Fig. 5) consists of
a relation-shape convolution network (R-CNN) [79] backbone
to embed point clouds of branches into a feature vector.
Additionally, we provide the network with a position feature
for each branch part as global information concatenated with
the point cloud feature vector. Together, both features are
projected into a 256-dimensional embedding feature space
from which we aim to reconstruct the point cloud. We add
four output heads to classify if the branch obtains foliage and
predict the orientation and radius to ensure that the network
learns to represent the geometric features of branch point
clouds.

B. Nearest Neighbor Lookup

The trained point cloud network encodes point clouds of
tree parts into embedding vectors that represent the geometric
properties of a point cloud. This embeds a large collection
of synthetically generated branch point clouds and organizes
an embedding space of branch parts. When reconstructing the
tree, the network projects the real point cloud into the embed-
ding space. We then perform neural ranking by computing the
distance of the query point cloud embedding and all embedded
branch parts to select a list of the top n nearest neighbors. An
example in Fig. 7 shows the point clouds of a query branch
part and its top five nearest neighbors (both point clouds and
meshes).

C. Branch Candidate Selection

The point cloud embedding network retrieves the geomet-
rically most similar parts from a large dataset of branch
part candidates. The nearest neighbors are ranked by their

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

Fig. 6. Representations of our pipeline: Our framework uses unstructured point clouds as input (a). We perform instance segmentation on the points (b), then
compute PDC to obtain branch part instances (c). We then perform neural ranking to obtain branch meshes (d) that can be connected to complex branching
structures (e), which can further be rendered as tree branches or fully rendered as complete (g).

Fig. 7. Neural ranking: given a query branch point cloud (left), we retrieve
the most similar point clouds of a dataset of embedded branch parts and the
corresponding meshes that were used to generate it. The nearest neighbor
selection is performed by computing the distance in the embedding space.

embedding space distance to the query shape. However, as
the embedding network performs a non-linear projection of
the input points to the embedding vector, the branch part
with the smallest distances to the query shape may not best
fit compared to the other nearest neighbors. Therefore, we
perform an optimization step to identify the best-fitting branch
part out of the set of top n nearest neighbors. For each
candidate from the set of the top-ranked branches, we use
gradient descent to find an optimal transformation (translation,

rotation, scale) w.r.t. to the corresponding point cloud. The
objective function is the Chamfer distance between the input
and candidate point clouds and the cosine distance between
the predicted and branch directions. The best-fitting branch
part is the transformed candidate with the lowest error. After
optimizing all branch parts, we remove the points used to
identify the parts and position the corresponding branch part
mesh geometry at the detected location and orientation. A tree
is then represented as a set of disconnected tree parts (with
their skeletal graphs) and a set of unused points from the input
point cloud (see Fig. 6 d).

VI. FOREST MESH CONSTRUCTION

The tree part matching fits only point clouds with more
points than a certain threshold (50 points in our implementa-
tion). The points that were not used for tree part matching
are called the unused points and denoted by PU ∈ PF

(Fig. 8 a). We decompose the tree parts into cylindrical tree
parts, and each cylinder is oriented to include start pis and the
endpoint pie. Some ends can be shared. Each tree branch part
also includes topological information about the connectivity.
We first connect all tree parts into a graph that is later divided
into individual trees. The unused points guide the completion
of the graph (Fig. 8 c). The graph includes all correctly
separated branch parts that are then connected by meshes.
The output of the algorithm is the mesh of the entire forest
(Fig. 8 e).

The mesh construction is a three-step process. First, we
build the branch part connectivity graph denoted by BG

where each tree branch is associated with a list of potential
connections in a visibility cone (Fig. 8 b). In the second step,

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

Fig. 8. Tree mesh generation: The input is the tree branch parts with their
skeletal graphs and the unused points Pu (a). Each tree part is assigned
candidate connections within a visibility cone (b). The shortest path through
the unused points within the candidates from endpoints pie to starting points
pjs is detected (c). The tree part skeletal graphs are completed (d), and the tree
part geometry and the new parts of the skeletal graphs are used to generate
generalized cylinders that complete the tree geometry (e).

Zig-zag Angle Parallel shift Point test

Fig. 9. Four geometry checks are performed for each potential connection.

we convert the connectivity graph BG into a set of geometrical
tree graphs denoted by TG by connecting the tree branches.
Specifically, for each tree branch, the endpoint is connected
to the possible starting points of tree branches in the visibility
cone by following the unused points. Tree branches with the
shortest path are then connected. Note that the connections
point down from endpoints to the starting points (Fig. 8 c).
In the third step, we fit the TG with smooth skeletal curves
that are interpolated by generalized cylinders that provide the
smooth meshes (Fig. 8 d).

A. Branch Part Connectivity Graph BG

The input is the unused point cloud PU , and the output
is the branch part connectivity graph BG that includes all
potential connections for each branch part. Each branch part
has assigned orientation from the previous step. The center
of the lower cap is denoted as the starting point Ps, and the
center of the second cap is the endpoint Pe.

The connectivity graph construction proceeds as follows
(see also Alg. 1, Appx.). We put a visibility cone on the
point pie with a 45o radius that prunes the PU , and only
the points within this cone are considered. All starting points
with direct visibility within this radius will be considered a
potential connection. We then trace the path between pie and
each potential connection through the unused points PU by

L

4

2

Initial Graph

…

L

4

2

Branch 1
L

4

2

Branch 2

L R

4

2

Branch 3
L R

4

2

Branch 4
L R

4

2

Final Graph

RRR

Fig. 10. Set of Tree Graphs TG generation: The input is the branch
connectivity graph BG with all potential connections, and the output is a set
of tree graphs TG. The initial graph has allocated branch parts corresponding
to roots (orange). We then query unallocated parts (blue) and connect them
to the allocated ones.

performing the bread-first search from pie. We connect it with
the closest points from PU and repeat this process for all
connected points. The same process is executed from each
potential endpoint. The shortest path (Fig. 8 b) is then stored
with the set of potential connections. We allocate the unused
points to a voxel grid to speed up the look-up calculations.
The output of this step is the connectivity graph, i.e., a set
of possible parent nodes assigned to each tree part. Note that
one node can have multiple possible connections, as shown in
Fig. 10

At the same time, each potential connection needs to
pass four geometric tests (Fig. 9). (1) Zig-zag test detects
connections in an incorrect order. (2) Branching angle test
detects connections that have excessive branching angles. (3)
Parallel-shift test detects nearly parallel connections but far
away in the direction perpendicular to their axis. (4) Point test
detects if the connection misses the unused points from the
point cloud PU . A connection that does not pass the test is
not included in BG.

B. Set of Tree Graphs TG

We then split BG into a set of mathematical tree graphs TG

(Fig. 10) by removing edges that point to two parents (such
as the connection of tree branches 3,4 and 7). We call a tree
branch allocated (shown as orange) if it belongs to TG. We
first allocate all root tree parts (L and R). We then sort all
unallocated branches by their height (shown in blue with the
number corresponding to the height and the order in which
they are processed). We take the lowest unallocated branch
(branch 1), check all allocated branches in their proximity,
and allocate them to the closest one. This is repeated for all
unallocated branches until all branches have been allocated.

C. Mesh Generation

The previous step results in a set of mathematical trees
that connect the branch parts (meshes). In the last step, we
complete the meshes by connecting them as shown in Fig. 8 d-
e. For more details, please refer to Alg. 2 (Appx.).

The ending, the beginning points, and the normal vectors
for each pair of tree parts mesh are known (the dataset was
designed to include them), as this information is associated

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

Fig. 11. Occlusion robustness: A tree (e) in a forest (a, highlighted in blue) is occluded during the scanning, resulting in an incomplete point cloud (b, f).
Our method reconstructs a tree model (c, d, g, h) that closely resembles the ground truth model.

with the detected tree part by neural ranking. We connect
the two points and normals by Hermite spline and use it as
the spine of a generalized cylinder that interpolates the caps
of the connecting branches. We use the Frenet frame of the
spine curve to orient the surface of the generalized cylinder
for consistent texturing.

VII. IMPLEMENTATION

We implemented a framework in C++ to generate synthetic
forest data. We use a state-of-the-art procedural model to
generate models of forests with eight different species [25]. We
decompose the generated forest models into unique tree parts,
their skeletal graphs, and meshes. Furthermore, we obtain a
synthetic point cloud by scanning the forest model with a
virtual LiDAR simulator, and we add random noise to each
scanned point based on the distance between the scanner and
the destination point. Additionally, the direction of rays is
modified randomly to mimic the inaccuracy of the hardware.
We use the framework to generate a dataset of 160 forests,
each including 40 tree models. We extract around 1M tree parts
from the generated tree models, including associated meshes,
skeletal graphs with radius and growth directions, and foliage
if they exist. To augment the data, we rotate each part around
the x- and z-axes (± 45°) and by adding per-point to each
branch point cloud. After data augmentation, the final dataset
contains around 4M tree parts with the associated information.

The second part of our framework implements a Python
framework for a point cloud embedding network, a point cloud
encoder-decoder architecture based on an R-CNN backbone.
We use this network to reconstruct PPCs in an auto-regressive
manner. We supervise the network with additional losses to
improve the encoding of point cloud geometric features. Once
the neural ranking and the selection of tree parts are complete,
we hand the generated collection of tree parts back to our C++
framework. We then perform the geometric consolidation of

Fig. 12. Comparison of reconstructing the same tree model with different tree
parts. (a): The ground truth point cloud and the corresponding tree mesh. (b):
A reconstructed tree composed of tree parts from eight different tree species
(the color on the point clouds indicates from which species a part was taken).
(c): The tree model was reconstructed from parts of the same species. (d): A
different species reconstructed from parts of the species shown in (a).

branch graph collections into a full skeletal branch graph to
generate a surface mesh for rendering. We define a simple
procedural model for leaves that attaches leaves with different
orientations to smaller branches and twigs.

During the peak density clustering (Sect. IV-B), each tree
part is composed of point clouds from individual trees. The
skeleton information of the tree part is the combination of the
remaining skeletons within the point clouds in the tree part.

A. Forest Data

We used real point cloud data from FOR-instance [85]
and TreeLearn [86]. The average number of trees in a forest
patch is 46, and the average point density is 4,061 points
per m−2. The dataset covers various forest types, including
coniferous-dominated boreal forests, temperate forests, native
dry sclerophyll eucalypt forests, and deciduous-dominated

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

alluvial forests. The scans of real trees shown in Fig. 20 are
from [8], and Fig. 21 are from multi-view stereo reconstruction
with images captured using a smartphone. The real forest data
vary the point cloud quality. Some datasets include understory
(Fig. 1), and some are from tree plantations (the same tree
species in semi-regular spacing) (Fig. 23 a-c). Some datasets
were captured only by a UAV, and some were combined with
data from a person walking through the forest with a backpack
LiDAR scanner and carefully merged [3] (Fig. 23 d-f). We
provide details when we discuss particular results below.

Large scenes may not fit into the GPU memory and are
divided into patches that are processed independently. In our
implementation, we use overlapping patches and discard the
trees on the patch boundaries that are partially reconstructed.

B. Neural Network Training

The neural networks were trained on four NVIDIA RTX
A5000 GPUs (24GB memory) and an Intel(R) Xeon(R) Silver
4316 CPU with 256GB RAM. The input point clouds are sub-
sampled to 40,000 points by farthest point sampling. When
constructing a mini-batch, we normalized the point clouds
into a unit cube and augmented each point cloud with a
random rotation along with the up direction. The point cloud
embedding network requires around 72 hours of training with
a learning rate 1e-4 and batch size 200. This network also
operates on tree parts obtained from the normalized tree point
clouds. Each part is sub-sampled to 500 points by farthest
point sampling and moved to the origin in 3D space. If a tree
part has less than 500 points, we fill the input tensor for that
part with ‘0s’.

VIII. RESULTS AND VALIDATION

We present qualitative results to demonstrate the effective-
ness of our method. Additionally, we conducted experiments
to assess our method quantitatively and compare it to state-of-
the-art methods in the field.

A. Results

Figs. 1 and 23 show forests reconstructed from large un-
structured point clouds. Our method reconstructed individual
trees in a forest with a high degree of detail. Fig. 1 is a
forest dominated by European beech from TreeLearn [86]
dataset, including 127 trees with around 8M points, captured
by GeoSLAM ZEB Horizon RT. The processing took around
90 minutes with a single NVIDIA RTX A5000 GPU, Intel(R)
Xeon(R) Silver 4316 CPU, and a maximum of 64GB RAM
during inference. Fig. 23 are forests from FOR-instance [85],
where the species vary from coniferous-dominated temperate
forest (a), coniferous-dominated boreal forest (d), deciduous
dominated-alluvial (g) and Native dry Sclerophyll Eucalypt
forest (j). The average number of trees in these forest patches
is 64, and the number of points is around 3.6M, as scanned
by UVA. The processing time is around 50 minutes.

Tree part variability: Fig. 12 shows how the reconstruction
depends on the variability of the parts in the tree part dataset.
Trees of the same species include similar geometric features

Fig. 13. Reconstruction results with a varying number of points: given an
input point cloud and the corresponding mesh (left), we show the reconstruc-
tion results from points with 500, 1,000, 5,000, 10,000, and 40,000 points.
As shown, while there are subtle differences in the reconstructed branching
structure, our approach is robust against using different amounts of points.

such as the internode length or branching angle, and the
underlying idea is that if the variability of the tree parts is
high and the dataset is sufficiently large, the tree parts will
show sufficient variability to fit models independently of the
tree species. A tree model (a) is reconstructed using a neural
ranking of a large collection of all 4M tree parts from all
possible species (b). We then reconstruct the tree model by
only using tree parts obtained from tree models from the same
species for around 500,000 tree parts (c). Finally, (d) shows a
different tree species reconstructed from around 480,000 tree
parts of the species shown in (a). As can be seen, most of the
tree parts are not used for reconstruction for one species.

Part usage frequency: We have counted how often a tree
part is used to reconstruct trees in Fig. 14 b. As expected,
the distribution follows the power law shown in Fig. 14 a. Of
all possible 4M parts, the most frequent part is used 121×,
the second 45×, and the third 37×. Moreover, 1, 524 are used
1×, and 411 are used 2×. The high number of unused parts
is because the neural network is trained on a large and highly
variable dataset. The trees in this reconstructed set are the
same species, and their geometric variability is much lower.
Note that this observation agrees with the previous experiment
about the tree part variability.

An experiment in Fig. 14 b-d shows what happens if we
use only the most frequently used tree parts for reconstruction.
The figure shows a small group of trees reconstructed from all
2,387 parts (b), the top 50% or 1,193 parts (c), and the top
20% or 477 of parts (d). With the decreasing amount of used
parts. the reconstruction fails, and the most affected parts are
in the top canopy, which has the highest variability.

Robustness: Figs. 11 and 13 demonstrate how our algo-
rithm handles reconstructing trees and forests from partial
point clouds (with occlusion shadow) and from point clouds
with varying densities. Fig. 11 a-d shows the reconstruction of
a forest scene with our framework. A tree (a, e) is occluded
during the scanning, and we only obtain a partial point cloud
(f), which is a common scenario when reconstructing trees
from TLS point clouds. Although the point cloud is incom-
plete, our method reconstructs a tree model (g) closely resem-
bling the ground truth (e). Note that most of the inconsistencies
are in the small branches. Fig. 13 shows reconstruction from

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

0

20

40

60

80

100

120

0 500 1000 1500 2000

0

100

0 20 40 60 80 100

Top 1
121x

Top 2
45x

Top 3
37x

(a)

Fig. 14. Distribution of the frequency of the used part for reconstruction (a)
of the small forest in (b). The most frequent part is used 121×, the second
most used part is used 45× and the third 37×. The curve follows a power
law, and the inset on the right shows the distribution for the top 100 parts.
The forest reconstructed with all available tree parts used 2,387 parts out of
4M possible (a) and two reconstructions from a subset of the most frequently
used parts, where we only used 50% (1,193) (c) and 20% (477) of initially
used tree parts (d).

Fig. 15. Comparison with different tree part ranking methods. The first row
represents the error maps, and the second shows the reconstruction results.
As shown in the figure, the top-10 ranked tree parts with optimization can
reconstruct models with the lowest error.

point clouds of different densities. TreeStructor can reconstruct
branching structures that follow the ground truth. Similarly to
the previous case, the main inconsistencies are in the small
branches.

B. Validation

We are not aware of any dataset of a reconstructed forest.
Thus, we compare the meshes of our synthetic forest data
scanned with a virtual LiDAR simulator. We further show a
comparison to the state-of-the-art single tree reconstruction,
and we ablate TreeStructor.

Validation Metrics: We evaluate the performance of the
reconstruction method by using the Precision, Recall, and F-
score from [87] between the ground-truth mesh and the recon-
structed mesh. This method samples one mesh and compares
the points to the second mesh and vice versa. The F-score is
computed using precision P (τ) and recall R(τ) with a quality
threshold τ . The precision is the indicator of the reconstruction

accuracy, where the scanned points from the reconstructed
mesh find the minimum distance to the ground-truth mesh.
The points are valid if their minimum distance from the mesh
is within the threshold τ . The precision is computed as the
ratio of the valid points number to the total points number.
The recall indicates how tight the reconstructed mesh covers
the set of points from the other mesh. The recall is given by
the ratio of the valid input points to all points. Finally, the
F-score is the harmonic mean between precision and recall.

We also evaluate quantitatively our reconstruction by com-
puting the distance between the input point clouds and the
reconstructed meshes. We used the Chamfer distance (CD) and
earth-mover distance (EMD) between the input point cloud
and the point cloud of the reconstructed mesh simulated by a
virtual scanner.

Comparison to the state-of-the-art Methods: We evaluate
the quality of the reconstruction results by comparing them
with learning-based TreePartNet [8], global-optimization-
based [9], and procedural modeling guided reconstruction [88].
For single tree reconstruction methods [8] and [9], the re-
construction is based on instance segmentation from [82].
The comparisons are shown in Figs. 16, 20, 21, 22 and
in Tabs. II and III. For reconstruction quality evaluation,
tree reconstruction methods are evaluated using CD, EMD,
Precision, Recall, and F-score.

First, we evaluate the quality of the forest reconstruction
on synthetic datasets. The comparison are shown in Fig. 16
and Tab. II. In Fig. 16, the first column is the input point
cloud scanned with foliage from the synthetic dataset, and the
second column is the branching ground truth of the forest. We
visualize the branching mesh here for better visual comparison.
The remaining columns compare with the state-of-the-art
method, where the last column visualizes our reconstructed
forest with foliage. The reconstructed forest mesh obtained a
similar geometry to the ground truth, and the rendered forest
with foliage covers the input point cloud well. Our method
outperforms the current reconstruction method by around 2%
on average in the synthetic dataset (see Tab. II).

We evaluate the reconstruction performance using real data.
Apart from the metrics above, we visualize the error map
from [8], computed by the closest distance for the point
in the input point clouds to the reconstructed mesh, the
first row of Figs. 20 and 21 is the error map, where red
represents high and blue low error. Fig. 22 shows a real
forest point cloud reconstruction with foliage. Contrary to the
previous work, TreeStructor reconstructs complete geometry
and distinguishes outer branches from noise. Moreover, as seen
from Tab. III, TreeStructor generates branching structures with
lower error and fewer artifacts compared to the state-of-the-
art methods. In particular, TreeStructor outperforms the state-
of-the-art method for around 6% on average, especially on
Precision, Recall, and F-score with larger τ for at least 13%.

Ablation study: We compare the tree part ranking meth-
ods by using Chamfer distance with top-1 closest tree part
without optimization, top-10 without optimization, and top-
10 with optimization (Fig. 15 and Tab. I). Our optimization
method for orienting and positioning the tree parts outperforms
positioning based only on the Chamfer distance. We also

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

Fig. 16. Reconstruction comparison on three synthetic forest point clouds: The first column is the input point cloud scanned with foliage from the synthetic
dataset, and the second column is the branching ground truth of the forest. The remaining columns compare with the state-of-the-art method, where the last
column visualizes our reconstructed forest with foliage. As can be seen, our method achieves better reconstruction performance than other methods.

TABLE I
QUANTITATIVE COMPARISON OF TREE PART RANKING METHODS ON

SYNTHETIC DATA SETS.
CD×100↓ EMD×1000↓

Threshold τ=0.01
F-score↑ Precision↑ Recall↑

chamfer distance 0.058 3.845 0.697 0.630 0.782
top 1 w/o optimization 0.022 2.804 0.765 0.669 0.905
top 1 w optimization 0.021 2.191 0.769 0.654 0.936
top 10 w optimization 0.019 2.445 0.799 0.704 0.925

evaluated the influence of using different backbones for the
neural embedding. Tab. IV shows that the reconstruction
results between different backbones are less than 2%. We
selected R-CNN as our backbone because the reconstruction
result achieves high accuracy, and the inference is 16% better.

Experiments on Different LiDAR Sources: We evaluate
the robustness of our model by reconstructing the same tree
model with different laser scans. Fig. 18 shows a scanned
tree by backpack, TLS, airborne, and combined point cloud
aligned by all laser sources. Our method reconstructs high-
quality tree models from multiple types of laser scans owing
to the diversity of the dataset and geometric-awareness of the
branch parts from the neural network.

Comparison to QSM: We compare the reconstruction
model with QSM [78] to evaluate the accuracy of model
reconstruction. We create realistic synthetic data by full sam-
pling and TLS scanning, and measure DBH (m), total volume
(m3), and tree height (m).Tab. VI shows that our model shares
similar reconstruction capability compared with QSM, while
our model outperforms QSM on TLS data with 12% fewer
errors on average. Besides, the reconstructed models from our
method do not suffer from twisting artifacts (see Fig. 17).

IX. DISCUSSION AND LIMITATIONS

Our method focused on exploring neural ranking for recon-
structing tree-branching structures. Specifically, our goal was
to devise a pipeline to reconstruct real point clouds of multiple
trees into individual tree models in forest settings. Therefore,
we rely on established techniques, such as OneFormer [81]
and SoftGroup [82], to first decompose large point clouds into

(a) (b) (c)

(d) (e) (f)

Fig. 17. Comparison with QSM on different LiDAR scanning data. (a) and (d)
show the same tree scanned by full sampling and TLS simulation. Compared
with QSM results (c) and (f), our model can generate more realistic tree
shapes with fewer twisting artifacts.

smaller tree-centric point clouds that can be processed with
neural network architectures, such as for the decomposition
of individual tree point clouds into tree parts. We rely on
synthetically generated tree models for both neural network
architectures that we generate with a procedural model for tree
development. While this workflow enables the generation of
precise labels for point clouds, which is commonly not the case
for real data, it is limited by the capabilities of the procedural
model. Even state-of-the-art procedural models commonly do
not provide branching structures as diverse as what can be
observed in nature. However, our neural ranking approach is

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT TREE RECONSTRUCTION METHODS ON SYNTHETIC DATASETS.

Figure Method CD×100↓ EMD/1000↓
Threshold τ=0.005 Threshold τ=0.01 Threshold τ=0.02

Precision Recall F-score Precision Recall F-score Precision Recall F-score

Fig. 16(Top)

[88] 0.862 39.6 0.382 0.920 0.539 0.496 0.974 0.657 0.714 0.982 0.826
[8] 0.980 40.1 0.345 0.911 0.500 0.448 0.973 0.613 0.668 0.985 0.795
[9] 0.454 32.9 0.506 0.798 0.619 0.686 0.868 0.766 0.903 0.887 0.894

Ours 0.412 31.2 0.501 0.900 0.643 0.661 0.969 0.786 0.879 0.984 0.928

Fig. 16(Middle)

[88] 1.058 40.9 0.450 0.942 0.609 0.545 0.993 0.703 0.702 0.998 0.824
[8] 1.079 41.3 0.426 0.928 0.583 0.521 0.96 0.682 0.682 0.990 0.810
[9] 0.350 28.3 0.619 0.925 0.741 0.746 0.988 0.850 0.891 1.000 0.942

Ours 0.151 23.2 0.706 0.932 0.803 0.847 0.987 0.911 0.965 0.990 0.981

Fig. 16(Bottom)

[88] 1.083 41.2 0.362 0.93 0.521 0.483 0.982 0.647 0.659 0.998 0.794
[8] 0.958 39.2 0.320 0.922 0.475 0.440 0.980 0.607 0.655 1.000 0.791
[9] 0.900 36.5 0.531 0.922 0.673 0.706 0.980 0.820 0.897 0.998 0.945

Ours 0.203 19.6 0.566 0.937 0.705 0.767 0.985 0.862 0.973 0.992 0.986

TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT TREE RECONSTRUCTION METHODS ON REAL-WORLD DATASETS.

Figure Method CD×100↓ EMD/1000↓
Threshold τ=0.005 Threshold τ=0.01 Threshold τ =0.02

Precision↑ Recall↑ F-score↑ Precision↑ Recall↑ F-score↑ Precision↑ Recall↑ F-score↑

Fig. 20 (Left)

[88] 0.029 2.385 0.501 0.476 0.488 0.796 0.796 0.796 0.980 0.984 0.982
[8] 0.029 1,776 0.567 0.516 0.540 0.831 0.828 0.829 0.966 0.991 0.978
[9] 0.026 1.987 0.610 0.4341 0.507 0.914 0.790 0.847 0.980 0.984 0.982

Ours 0.014 1.230 0.735 0.672 0.702 0.939 0.927 0.932 0.990 0.996 0.993

Fig. 20 (Right)

[88] 0.423 12.01 0.187 0.507 0.273 0.392 0.762 0.518 0.738 0.953 0.832
[8] 0.552 13.98 0.202 0.598 0.302 0.433 0.931 0.591 0.725 0.989 0.837
[9] 0.521 7.074 0.407 0.756 0.529 0.644 0.918 0.756 0.926 0.823 0.871

Ours 0.433 7.780 0.337 0.792 0.473 0.681 0.974 0.802 0.942 0.891 0.942

Fig. 21

[88] 1.801 196.3 0.067 0.079 0.073 0.215 0.374 0.273 0.530 0.782 0.632
[8] 2.852 216.2 0.068 0.078 0.072 0.218 0.368 0.273 0.525 0.776 0.626
[9] 1.684 197.9 0.062 0.078 0.069 0.195 0.384 0.258 0.050 0.798 0.618

Ours 1.509 159.3 0.068 0.070 0.069 0.351 0.439 0.390 0.669 0.857 0.751

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 18. Tree reconstruction from different laser scans. We reconstruct the
single tree with input from backpack (a,e), TLS (b,f), airborne (c,g), and
combined data aligned with all sources (d,h). TreeStructor reconstructs high-
quality tree models from multiple types of laser scans.

TABLE IV
QUANTITATIVE COMPARISON OF BACKBONE ON SYNTHETIC DATA SETS.

CD×100↓ Cosine Dist↓ Classification Classification L2 Radius↓Precision↓ Recall↓
PointNet++ 0.035 0.025 0.703 0.811 0.0021
DGCNN 0.027 0.012 0.778 0.852 0.0010
PointTransformer 0.025 0.010 0.792 0.875 0.0009
Ours 0.030 0.009 0.775 0.854 0.0010

not limited by the expressiveness of the developmental model.
We have shown that large collections of tree parts can be
organized with a learned embedding space to disentangle their
geometric properties successfully. One of the key insights of
our approach is that the more synthetic point cloud parts are
embedded and the more diverse they are, the more likely we
will find a meaningful representative for the input tree part

Fig. 19. Comparison with different tree part clustering methods. The first row
represents the error maps, and the second shows the reconstruction results.
DBSCAN cannot capture small branches in detail, and TreePartNet tends to
split the trunk into small sub-elements.

TABLE V
QUANTITATIVE COMPARISON OF TREE PART CLUSTERING METHODS ON

SYNTHETIC DATA SETS.
CD×100↓ EMD×1000↓

Threshold τ=0.01
Precision↑ Recall↑ F-score↑

DBSCAN 0.032 5.200 0.629 0.562 0.717
TreePartNet 0.021 5.744 0.799 0.704 0.925
Ours 0.019 2.445 0.824 0.739 0.933

point cloud.
Our approach differs from existing neural network-based

approaches (e.g., TreePartNet [8]) as TreeStructor focuses on
learning a representation for tree parts that can be leveraged
for neural ranking instead of instance segmentation. Compared
with TreePartNet, the instance segmentation in our work is
accomplished by an optimized unsupervised clustering, which

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

Fig. 20. Reconstruction comparison on two real point clouds: The first row shows the error map of single-side Chamfer distance as a color overlay, where
red indicates a large error and blue is a low error. The second row shows the reconstructed tree meshes from the point clouds. As can be seen, compared to
the state-of-the-art methods, our approach generates branching structures with lower error.

Fig. 21. Reconstruction comparison on a real forest point cloud: The first row shows the error map (red indicates a large error, and blue indicates a low
error). The second row shows the reconstructed forest meshes from the point clouds. Our method generates reconstructed meshes with lower error.

TABLE VI
QUANTITATIVE COMPARISON OF RECONSTRUCTION ERROR WITH QSM.

DBH Total Volume Tree Height
mean std mean std mean std

QSM 0.015 0.029 0.007 0.018 0.051 0.067
QSM TLS 0.025 0.003 0.012 0.098 0.087 0.117
Ours 0.011 0.013 0.006 0.004 0.059 0.079
Ours TLS 0.020 0.019 0.007 0.002 0.106 0.173

is not limited by the number of cluster numbers. Our work
resembles other approaches that rely on tree parts to generate
tree models (e.g., [44]). However, unlike the existing methods,
we focus on reconstructing forest point clouds with minimal
user intervention.

Currently, our method has several limitations. First, al-
though we rely on a tree part dataset with high diversity, there
may still be some tree species with unique tree part geometry
that will not be successfully reconstructed (e.g., Adansonia
digitata tree). Second, our graph connection algorithm cannot
reconstruct detailed branch surfaces. Real trees in forests often
have pronounced branches as the result of lateral growth, while
others may be covered by moss or climbing plants. Currently,
our method cannot reconstruct these branches and additional
features. Third, our approach may fail if the scanned point
cloud input is too sparse or the number of points is too low. In
these cases, the neural ranking will fail to retrieve meaningful
branch candidates. Fourth, although we can retrieve thickness
information from predicted tree parts, it is inaccurate due to
the variance introduced during the scanning process. Fifth, the
lowest layer of many forests often includes dead trees, bushes,
and other debris [89]. Our method assumes we can detect the

lowest part of individual trees, but it may fail in the presence
of such features. Finally, our method cannot extract foliage
information from the forest point clouds; foliage is generated
with our procedural tree model.

X. CONCLUSIONS AND FUTURE WORK

We have introduced TreeStructor, a novel method for recon-
structing individual tree meshes from point scans of forests. A
large unstructured forest point cloud is decomposed into point
clouds of trees and branches. To perform this decomposition,
we devised a point cloud processing pipeline of different
clustering and segmentation techniques that allow us to com-
pute the instance segmentation of trees and branches with
unprecedented quality. To reconstruct trees, we leverage and
extend a state-of-the-art point cloud network to project a point
cloud of branches into an embedding space. Once trained,
the embedding space can be used to perform neural ranking-
identifying nearest neighbors- of branch parts that closely
match the geometry a given input point cloud represents. The
branch parts are connected and geometrically consolidated,
eventually leading to skeletal graphs that can be transformed
into high-quality surface meshes of the scanned trees. We have
carefully validated our method through numerous experiments
and shown various qualitative examples of reconstructions.

We have shown that the reconstruction of branches can be
performed through neural ranking, which leads to multiple
possible avenues for future work. First, extending our method
to other organic shapes that are difficult to reconstruct from
point clouds, such as flowers and grass or various leaf shapes,
seems interesting. While we have shown that it is possible

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

Fig. 22. Reconstruction comparison of a real forest point cloud with foliage. Contrary to the previous work, TreeStructor reconstructs complete geometry
and distinguishes outer branches from noise.

to reconstruct branching structures through neural ranking,
it would be interesting to explore the robustness of neural
ranking toward even denser forest scenarios, higher degrees
of noise in the sensor data, or for the reconstruction of point
clouds obtained with different types of capturing modalities
(e.g., UAV, hand-held [90]). Finally, we could explore multi-
modal network architectures that allow simultaneous operation
on point clouds and images. Our method attempts to use
as broad a shape variety as possible to reconstruct various
forests and tree species. Another interesting future work is
determining the smallest set of the most representative shapes
for a given forest.

ACKNOWLEDGEMENTS

This work was partially supported by NIFA grant #2024-
67013-42449 to Benes and by NIFA grant #2023-68012-
38992, NIFA grant #2024-67021-42879, and NRCS grant

#NR233A750004G044 to Habib, Benes, and Fei. The findings
and conclusions should not be construed to represent any
agency determination or policy. This work was supported in
part by the U.S. National Science Foundation under awards
2417510 and 2412928. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect those of the
National Science Foundation.

REFERENCES

[1] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan, “Symmetry in 3d
geometry: Extraction and applications,” in Computer graphics forum,
vol. 32, pp. 1–23, Wiley Online Library, 2013.

[2] T. Rumezhak, O. Dobosevych, R. Hryniv, V. Selotkin, V. Karpiv,
and M. Maksymenko, “Towards realistic symmetry-based completion
of previously unseen point clouds,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2542–2550, 2021.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

Fig. 23. Four forest reconstruction examples: Our method can reconstruct large collections of trees by decomposing point clouds of forests (left column) into
individual trees and branch parts. We show the reconstruction of deciduous forests (a-c and g-i) and pine forests (d-f and j-l) without (middle column) and
with leaves (right column). The output of our algorithm is a set of highly detailed and

[3] T. Zhou, R. Ravi, Y.-C. Lin, R. Manish, S. Fei, and A. Habib, “In
situ calibration and trajectory enhancement of uav and backpack lidar
systems for fine-resolution forest inventory,” Remote Sensing, vol. 15,
no. 11, p. 2799, 2023.

[4] A. Bienert, L. Georgi, M. Kunz, G. von Oheimb, and H.-G. Maas,
“Automatic extraction and measurement of individual trees from mobile
laser scanning point clouds of forests,” Annals of botany, vol. 128, no. 6,
pp. 787–804, 2021.

[5] C. Zhu, X. Zhang, M. Jaeger, and Y. Wang, “Cluster-based construc-
tion of tree crown from scanned data,” in 2009 Third International
Symposium on Plant Growth Modeling, Simulation, Visualization and
Applications, pp. 352–359, IEEE, 2009.

[6] F. Aiteanu and R. Klein, “Exploring shape spaces of 3d tree point
clouds,” Comput. Graph., vol. 100, p. 21–31, nov 2021.

[7] S. Du, R. Lindenbergh, H. Ledoux, J. Stoter, and L. Nan, “Adtree:
accurate, detailed, and automatic modelling of laser-scanned trees,”
Remote Sensing, vol. 11, no. 18, p. 2074, 2019.

[8] Y. Liu, J. Guo, B. Benes, O. Deussen, X. Zhang, and H. Huang,
“Treepartnet: Neural decomposition of point clouds for 3d tree recon-

struction,” ACM Transaction on Graphics, vol. 40, pp. 1–16, Dec. 2021.
[9] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana,

“Automatic reconstruction of tree skeletal structures from point clouds,”
in ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10, (New
York, NY, USA), Association for Computing Machinery, 2010.

[10] A. Zarei, B. Li, J. C. Schnable, E. Lyons, D. Pauli, K. Barnard, and
B. Benes, “Plantsegnet: 3d point cloud instance segmentation of nearby
plant organs with identical semantics,” Computers and Electronics in
Agriculture, vol. 221, p. 108922, 2024.

[11] Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and
B. Chen, “Texture-lobes for tree modelling,” in ACM SIGGRAPH 2011
papers, SIGGRAPH ’11, (New York, NY, USA), pp. 53:1–53:10, ACM,
2011.

[12] P. B. Boucher, I. Paynter, D. A. Orwig, I. Valencius, and C. Schaaf,
“Sampling forests with terrestrial laser scanning,” Annals of Botany,
vol. 128, no. 6, pp. 689–708, 2021.

[13] A. Lindenmayer, “Mathematical models for cellular interactions in
development i. filaments with one-sided inputs,” Journal of theoretical
biology, vol. 18, no. 3, pp. 280–299, 1968.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 16

[14] P. Prusinkiewicz, “Graphical applications of l-systems,” in Proc. Graph-
ics Interface’86, pp. 247–253, 1986.

[15] P. Prusinkiewicz and J. Hanan, “Visualization of botanical structures
and processes using parametric l-systems,” in Scientific Visualization
and Graphics simulation’90 (D.Thalmann, ed.), vol. 22(4), pp. 183–201,
J.Wiley & Sons, Ltd, 1990.

[16] R. Měch and P. Prusinkiewicz, “Visual models of plants interacting
with their environment,” in SIGGRAPH ’96: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
(New York, NY, USA), pp. 397–410, ACM, 1996.

[17] J. J. Lee, B. Li, and B. Benes, “Latent l-systems: Transformer-based
tree generator,” ACM Trans. Graph., vol. 43, Feb. 2024.

[18] J. Guo, H. Jiang, B. Benes, O. Deussen, X. Zhang, D. Lischinski, and
H. Huang, “Inverse procedural modeling of branching structures by
inferring l-systems,” ACM Trans. Graph., vol. 39, June 2020.

[19] I. McQuillan, J. Bernard, and P. Prusinkiewicz, “Algorithms for in-
ferring context-sensitive l-systems,” in Unconventional Computation
and Natural Computation: 17th International Conference, UCNC 2018,
Fontainebleau, France, June 25-29, 2018, Proceedings 17, pp. 117–130,
Springer, 2018.

[20] W. Pałubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch,
and P. Prusinkiewicz, “Self-organizing tree models for image synthesis,”
ACM Trans. Graph., vol. 28, no. 3, pp. 1–10, 2009.

[21] S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch,
B. Benes, and O. Deussen, “Plastic trees: Interactive self-adapting
botanical tree models,” ACM Trans. Graph., vol. 31, pp. 50:1–50:10,
July 2012.

[22] T. Hädrich, B. Benes, O. Deussen, and S. Pirk, “Interactive modeling and
authoring of climbing plants,” Comput. Graph. Forum, vol. 36, pp. 49–
61, May 2017.

[23] S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen, “Windy trees:
Computing stress response for developmental tree models,” ACM Trans.
Graph., vol. 33, Nov. 2014.

[24] F. Maggioli, J. Klein, T. Hädrich, E. Rodolà, W. Pałubicki, S. Pirk, and
D. L. Michels, “A physically-inspired approach to the simulation of plant
wilting,” in SIGGRAPH Asia 2023 Conference Papers, SA ’23, (New
York, NY, USA), Association for Computing Machinery, 2023.

[25] B. Li, J. Klein, D. L. Michels, B. Benes, S. Pirk, and W. Pałubicki,
“Rhizomorph: The coordinated function of shoots and roots,” ACM
Trans. Graph., vol. 42, jul 2023.

[26] W. Pałubicki, M. Makowski, W. Gajda, T. Hädrich, D. L. Michels, and
S. Pirk, “Ecoclimates: Climate-response modeling of vegetation,” ACM
Transactions on Graphics (TOG), vol. 41, no. 4, pp. 1–19, 2022.

[27] B. Li, N. A. Schwarz, W. Pałubicki, S. Pirk, and B. Benes, “Interactive
invigoration: Volumetric modeling of trees with strands,” ACM Trans.
Graph., vol. 43, jul 2024.

[28] S. Pirk, M. Jarzabek, T. Hädrich, D. L. Michels, and W. Pałubicki,
“Interactive wood combustion for botanical tree models,” ACM Trans.
Graph., vol. 36, pp. 197:1–197:12, Nov. 2017.

[29] T. Hädrich, D. T. Banuti, W. Pałubicki, S. Pirk, and D. L. Michels, “Fire
in paradise: Mesoscale simulation of wildfires,” ACM Transactions on
Graphics (TOG), vol. 40, no. 4, pp. 1–15, 2021.

[30] M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, and
W. Pałubicki, “Synthetic silviculture: Multi-scale modeling of plant
ecosystems,” ACM Trans. Graph., vol. 38, pp. 131:1–131:14, July 2019.

[31] K. Kapp, J. Gain, E. Guérin, E. Galin, and A. Peytavie, “Data-driven
authoring of large-scale ecosystems,” ACM Transactions on Graphics
(TOG), vol. 39, no. 6, pp. 1–14, 2020.

[32] T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen, “Procedural
urban forestry,” ACM Trans. Graph., vol. 41, Mar. 2022.

[33] B. Benes, N. Andrysco, and O. Šťava, “Interactive modeling of virtual
ecosystems,” in Eurographics Workshop on Natural Phenomena, pp. 9–
16, Eurographics Association, 2009.

[34] G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and
M.-P. Cani, “Authoring landscapes by combining ecosystem and terrain
erosion simulation,” ACM Trans. Graph., vol. 36, pp. 134:1–134:12, July
2017.

[35] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller, “Reconstructing 3d
tree models from instrumented photographs,” IEEE Computer Graphics
and Applications, vol. 21, no. 3, pp. 53–61, 2001.

[36] T. Isokane, F. Okura, A. Ide, Y. Matsushita, and Y. Yagi, “Proba-
bilistic plant modeling via multi-view image-to-image translation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2906–2915, 2018.

[37] Z. Liu, K. Wu, J. Guo, Y. Wang, O. Deussen, and Z. Cheng, “Single
image tree reconstruction via adversarial network,” Graphical Models,
vol. 117, p. 101115, 2021.

[38] B. Li, J. Kałużny, J. Klein, D. L. Michels, W. Pałubicki, B. Benes, and
S. Pirk, “Learning to reconstruct botanical trees from single images,”
ACM Transaction on Graphics, vol. 40, 12 2021.

[39] P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan, “Single image tree
modeling,” ACM Trans. Graph., vol. 27, no. 5, pp. 1–7, 2008.

[40] B. Neubert, T. Franken, and O. Deussen, “Approximate image-based
tree-modeling using particle flows,” ACM Transactions on Graphics
(Proc. of SIGGRAPH 2007), vol. 26, no. 3, 2007.

[41] C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall, “Modeling and
generating moving trees from video,” ACM Transactions on Graphics
(TOG), vol. 30, no. 6, pp. 1–12, 2011.

[42] O. Šťava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes,
“Inverse procedural modelling of trees,” Computer Graphics Forum,
vol. 33, no. 6, pp. 118–131, 2014.

[43] X. Zhou, B. Li, B. Benes, S. Fei, and S. Pirk, “Deeptree: Modeling trees
with situated latents,” IEEE Transactions on Visualization & Computer
Graphics, pp. 1–14, Aug. 2023.

[44] K. Xie, F. Yan, A. Sharf, O. Deussen, H. Huang, and B. Chen,
“Tree modeling with real tree-parts examples,” IEEE Transactions on
Visualization and Computer Graphics, vol. PP, no. 99, pp. 1–1, 2016.

[45] M. A. Uy, Y.-Y. Chang, M. Sung, P. Goel, J. G. Lambourne, T. Birdal,
and L. J. Guibas, “Point2cyl: Reverse engineering 3d objects from
point clouds to extrusion cylinders,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11850–
11860, 2022.

[46] P. Li, J. Guo, H. Li, B. Benes, and D.-M. Yan, “Sfmcad: Unsupervised
cad reconstruction by learning sketch-based feature modeling opera-
tions,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4671–4680, June 2024.

[47] R. Ando, Y. Ozasa, and W. Guo, “Robust surface reconstruction of plant
leaves from 3d point clouds,” Plant Phenomics, vol. 2021, 2021.

[48] Y. Li, X. Fan, N. J. Mitra, D. Chamovitz, D. Cohen-Or, and B. Chen,
“Analyzing growing plants from 4d point cloud data,” ACM Trans.
Graph., vol. 32, no. 6, pp. 157:1–157:10, 2013.

[49] K. Yin, H. Huang, P. Long, A. Gaissinski, M. Gong, and A. Sharf, “Full
3d plant reconstruction via intrusive acquisition,” in Computer Graphics
Forum, vol. 35, pp. 272–284, Wiley Online Library, 2016.

[50] M. Boukhana, J. Ravaglia, F. Hétroy-Wheeler, and B. De Solan, “Ge-
ometric models for plant leaf area estimation from 3d point clouds: A
comparative study,” Graphics and Visual Computing, vol. 7, p. 200057,
2022.

[51] H. Xu, N. Gossett, and B. Chen, “Knowledge and heuristic-based
modeling of laser-scanned trees,” ACM Trans. Graph., vol. 26, p. 19–es,
oct 2007.

[52] W. Zhang, X. Peng, G. Cui, H. Wang, D. Takata, and W. Guo, “Tree
branch skeleton extraction from drone-based photogrammetric point
cloud,” Drones, vol. 7, no. 2, p. 65, 2023.

[53] Z. Wang, L. Zhang, T. Fang, P. T. Mathiopoulos, H. Qu, D. Chen,
and Y. Wang, “A structure-aware global optimization method for re-
constructing 3-d tree models from terrestrial laser scanning data,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9,
pp. 5653–5669, 2014.

[54] J. L. Cárdenas-Donoso, C. J. Ogayar, F. R. Feito, and J. M. Jurado,
“Modeling of the 3d tree skeleton using real-world data: a survey,” IEEE
Transactions on Visualization and Computer Graphics, 2022.

[55] X. Zhang, H. Li, M. Dai, W. Ma, and L. Quan, “Data-driven synthetic
modeling of trees,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, pp. 1214–1226, Sept 2014.

[56] J. Ravaglia, A. Bac, and R. A. Fournier, “Extraction of tubular shapes
from dense point clouds and application to tree reconstruction from laser
scanned data,” Computers & Graphics, vol. 66, pp. 23–33, 2017.

[57] X. Li, X. Zhou, and S. Xu, “Individual tree reconstruction based
on circular truncated cones from portable lidar scanner data,” IEEE
Geoscience and Remote Sensing Letters, vol. 20, pp. 1–5, 2022.

[58] M. Akerblom and P. Kaitaniemi, “Terrestrial laser scanning: a new stan-
dard of forest measuring and modelling?,” Annals of Botany, vol. 128,
pp. 653–662, 09 2021.

[59] B. N. Bailey and M. H. Ochoa, “Semi-direct tree reconstruction using
terrestrial lidar point cloud data,” Remote Sensing of Environment,
vol. 208, pp. 133–144, 2018.

[60] P. Raumonen, M. Kaasalainen, M. Åkerblom, S. Kaasalainen, H. Kaarti-
nen, M. Vastaranta, M. Holopainen, M. Disney, and P. Lewis, “Fast
automatic precision tree models from terrestrial laser scanner data,”
Remote Sensing, vol. 5, no. 2, pp. 491–520, 2013.

[61] A. Burt, M. Disney, and K. Calders, “Extracting individual trees from
lidar point clouds using treeseg,” Methods in Ecology and Evolution,
vol. 10, no. 3, pp. 438–445, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 17

[62] J. Li, X. Cheng, and Z. Xiao, “A branch-trunk-constrained hierarchical
clustering method for street trees individual extraction from mobile laser
scanning point clouds,” Measurement, vol. 189, p. 110440, 2022.

[63] T. Jiang, Y. Wang, S. Liu, Q. Zhang, L. Zhao, and J. Sun, “Instance
recognition of street trees from urban point clouds using a three-
stage neural network,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 199, pp. 305–334, 2023.

[64] Z. Hui, Z. Li, S. Jin, B. Liu, and D. Li, “Street tree extraction and
segmentation from mobile lidar point clouds based on spatial geometric
features of object primitives,” Forests, vol. 13, no. 8, p. 1245, 2022.

[65] M. Weinmann, M. Weinmann, C. Mallet, and M. Brédif, “A
classification-segmentation framework for the detection of individual
trees in dense mms point cloud data acquired in urban areas,” Remote
sensing, vol. 9, no. 3, p. 277, 2017.

[66] X. Wang, Z. Yang, X. Cheng, J. Stoter, W. Xu, Z. Wu, and L. Nan,
“Globalmatch: Registration of forest terrestrial point clouds by global
matching of relative stem positions,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 197, pp. 71–86, 2023.

[67] S. W. Chen, G. V. Nardari, E. S. Lee, C. Qu, X. Liu, R. A. F. Romero,
and V. Kumar, “Sloam: Semantic lidar odometry and mapping for forest
inventory,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 612–
619, 2020.

[68] J. Sun, P. Wang, Z. Gao, Z. Liu, Y. Li, X. Gan, and Z. Liu, “Wood–
leaf classification of tree point cloud based on intensity and geometric
information,” Remote Sensing, vol. 13, no. 20, p. 4050, 2021.

[69] X. Chen, K. Jiang, Y. Zhu, X. Wang, and T. Yun, “Individual tree crown
segmentation directly from uav-borne lidar data using the pointnet of
deep learning,” Forests, vol. 12, no. 2, p. 131, 2021.

[70] J. Shao, Y.-T. Cheng, Y. Koshan, R. Manish, A. Habib, and S. Fei, “Ra-
diometric and geometric approach for major woody parts segmentation
in forest lidar point clouds,” in IGARSS 2023-2023 IEEE International
Geoscience and Remote Sensing Symposium, pp. 6220–6223, IEEE,
2023.

[71] W. Yang, S. Vitale, H. Aghababaei, G. Ferraioli, V. Pascazio, and
G. Schirinzi, “A deep learning solution for height estimation on a
forested area based on pol-tomosar data,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 61, pp. 1–14, 2023.

[72] L. Zhao, E. Chen, Z. Li, W. Zhang, and Y. Fan, “A new approach for
forest height inversion using x-band single-pass insar coherence data,”
IEEE transactions on geoscience and remote sensing, vol. 60, pp. 1–18,
2021.

[73] J. Shao, Y.-C. Lin, C. Wingren, S.-Y. Shin, W. Fei, J. Carpenter,
A. Habib, and S. Fei, “Large-scale inventory in natural forests with mo-
bile lidar point clouds,” Science of Remote Sensing, vol. 10, p. 100168,
2024.

[74] Z. Huang, X. Li, H. Du, W. Zou, G. Zhou, F. Mao, W. Fan, Y. Xu,
C. Ni, B. Zhang, et al., “An algorithm of forest age estimation based
on the forest disturbance and recovery detection,” IEEE Transactions on
Geoscience and Remote Sensing, 2023.

[75] M. Zhang, W. Li, X. Zhao, H. Liu, R. Tao, and Q. Du, “Morphological
transformation and spatial-logical aggregation for tree species classifi-
cation using hyperspectral imagery,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 61, pp. 1–12, 2023.

[76] S. Hu, Z. Li, Z. Zhang, D. He, and M. Wimmer, “Efficient tree modeling
from airborne lidar point clouds,” Computers & Graphics, vol. 67, pp. 1–
13, 2017.

[77] Y. Li, Z. Liu, B. Benes, X. Zhang, and J. Guo, “Svdtree: Semantic
voxel diffusion for single image tree reconstruction,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4692–4702, June 2024.

[78] F. Guangpeng, L. Nan, F. Chen, Y. Dong, Z. Wang, H. Li, and
D. Chen, “A new quantitative approach to tree attributes estimation
based on lidar point clouds,” in Remote Sensing 12, no. 11: 1779.
https://doi.org/10.3390/rs12111779, IEEE, 2020.

[79] L. Hu, M. Qin, F. Zhang, Z. Du, and R. Liu, “Rscnn: A cnn-based
method to enhance low-light remote-sensing images,” Remote Sensing,
vol. 13, no. 1, 2021.

[80] A. López, C. J. Ogayar, J. M. Jurado, and F. R. Feito, “A gpu-
accelerated framework for simulating lidar scanning,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 60, pp. 1–18, 2022.

[81] M. Kolodiazhnyi, A. Vorontsova, A. Konushin, and D. Rukhovich,
“Oneformer3d: One transformer for unified point cloud segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20943–20953, 2024.

[82] T. Vu, K. Kim, T. M. Luu, T. Nguyen, and C. D. Yoo, “Softgroup
for 3d instance segmentation on point clouds,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2708–2717, 2022.

[83] S. Cai, S. Yu, Z. Hui, and Z. Tang, “Icsf: An improved cloth simulation
filtering algorithm for airborne lidar data based on morphological
operations,” Forests, vol. 14, no. 8, 2023.

[84] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[85] S. Puliti, G. Pearse, P. Surovỳ, L. Wallace, M. Hollaus, M. Wielgosz,
and R. Astrup, “For-instance: a uav laser scanning benchmark dataset for
semantic and instance segmentation of individual trees,” arXiv preprint
arXiv:2309.01279, 2023.

[86] J. Henrich, J. van Delden, D. Seidel, T. Kneib, and A. Ecker, “Treelearn:
A comprehensive deep learning method for segmenting individual trees
from forest point clouds,” arXiv preprint arXiv:2309.08471, 2023.

[87] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2mesh:
A self-prior for deformable meshes,” arXiv preprint arXiv:2005.11084,
2020.

[88] J. Guo, Z. Cheng, S. Xu, and X. Zhang, “Realistic procedural plant
modeling guided by 3d point cloud,” in ACM SIGGRAPH 2017 Posters,
pp. 1–2, 2017.

[89] L. R. Jarron, N. C. Coops, W. H. MacKenzie, and P. Dykstra, “Detection
and quantification of coarse woody debris in natural forest stands using
airborne lidar,” Forest Science, vol. 67, no. 5, pp. 550–563, 2021.

[90] X. Liang, Y. Wang, A. Jaakkola, A. Kukko, H. Kaartinen, J. Hyyppä,
E. Honkavaara, and J. Liu, “Forest data collection using terrestrial
image-based point clouds from a handheld camera compared to ter-
restrial and personal laser scanning,” IEEE transactions on geoscience
and remote sensing, vol. 53, no. 9, pp. 5117–5132, 2015.

XI. APPENDIX

Input: Predicted Branches from tree parts B, Scattered points P .
Output: Connectivity graph Gc.

1 Procedure:
2 Add starting point of b0...bn in B to Gc as vs0...vsn.
3 Add ending point of b0...bn in B to Gc as ve0...ven.
4 Add s0...sn in P to Gc as vp0...vpn.
5 For each vpi and vpj in Gc do:
6 — If dist (vpi, vpj) ¡ Rs:
7 — Add edge vpi→vpj to Gc.
8 — end
9 end

10 For each vpi and vsj in Gc do:
11 — If dist (vpi, vsj) ¡ Rp:
12 — Add edge vpi→vsj to Gc.
13 — end
14 end
15 For each vei and vpj in Gc do:
16 — If dist (vei, vpj) ¡ Rp:
17 — Add edge vei→vpj to Gc.
18 — end
19 end

Algorithm 1: Building Connectivity Graph.

Xiaochen Zhou is a Ph.D. candidate at Purdue
University, specializing in computer graphics, 3D
computer vision, and machine learning. His research
area is in AI-driven 3D reconstruction, point cloud
processing and procedural modeling.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 18

Input: Connectivity graph Gc.
Output: List of skeletons S0...Sn.

1 Procedure:
2 For each vei and vsj in Gc do:
3 — If dist (vei, vsj) ¡ Rb:
4 or exist path [vei→vpa...vpn→vpj] do:
5 — Add bi to bj ’s parent candidate list Lj .
6 — end
7 For each bi in B do:
8 — If height (vsi) ¡ Hr :
9 — Add new skeleton Sn.

10 — Add bi as the root branch of skeleton Sn.
11 — end
12 end
13 While any Si modified do:
14 — For each bi in B do:
15 — If bi has parent bp do:
16 — For each bj in Li do:
17 — If distance (bi, bj) ¡ distance (bi, bp) do:
18 — Replace bp with bj as bi’s parent.
19 — end
20 — end
21 — Else do:
22 — Add any bj from Li as bi’s parent.
23 — end
24 — end
25 end
26 For each bi in S0...Sn do:
27 — Connect all bi’s descendants to corresponding S.
28 end

Algorithm 2: Construct Skeletons

Bosheng Li is a Ph.D. candidate at Purdue Univer-
sity, specializing in computer graphics, procedural
modeling, and physics-based simulation. His work
covers geometric modeling of plants, forest recon-
struction, and creating simulation-ready synthetic
datasets for image- and point cloud-based tree recon-
struction, agriculture and environmental modeling.

Bedrich Benes is a professor and associate head
of Computer Science at Purdue University. His area
of research is in generative methods, simulation of
natural phenomena, and geometric modeling with
AI. He received his Ph.D. from the Czech Technical
University in Prague. Bedrich is a senior member of
IEEE and ACM and a Eurographics Fellow.

Ayman Habib is the Thomas A. Page Professor
of Civil Engineering at Purdue University and the
Co-Director of the Civil Engineering Center for
Applications of UAS for a Sustainable Environment.
He received a Ph.D. from Ohio State University. His
research is in terrestrial and aerial mobile mapping
systems, modeling the perspective geometry of non-
traditional imaging scanners, automatic matching
and change detection, calibration of low-cost digital
cameras, object recognition, LiDAR mapping, and
photogrammetric data.

Songlin Fei is a professor and dean’s chair of remote
sensing at Purdue University. He received his Ph.D.
degree in Ecology and a concurrent MS degree in
Statistics from the Pennsylvania State University.
His research focuses on the ecology and manage-
ment of invasive species, the understanding of forest
responses to climate change, and the modernization
of forestry into the digital age.

Input: Point cloud P , Threshold r, Root point proot
Output: Tree part clusters C.

1 Procedure:
2 Create empty graph G for clustering
3 Create adaptive neighbour list R
4 Create density list D
5 For each pi in P do:
6 — Compute adaptive neighbour ri by fadp(pi, r, proot)
7 — Compute density for each point di by fdensity(pi, P)
8 — Push ri into R
9 — Push di into D

10 end
11 For each pi in P do:
12 — dcurr density ← 0
13 — dcurr dist ← 0
14 — For each pj in P do:
15 — If dist(pi, pj) ¡ dcurr dist and D[i, j] ¿ dcurr density

16 — dcurr density ← D[i, j]
17 — dcurr dist ← dist(pi, pj)
18 — pk ← pj
19 — end
20 — Add [pi, pk, ei k] into G
21 — end
22 — end
23 For each ei j in G do:
24 — If ei j > R[i] do:
25 — Remove ei j from G
26 — end
27 — end
28 For each Gsub group in G do:
29 — If |{v|v ∈ Gsub group}| < distmax do:
30 — Add {v|v ∈ Gsub group} to C
31 — end
32 end

Algorithm 3: Peak Density Cluster

Jinyuan Shao is a PhD student at Purdue University.
He received a B.S. degree in information engineering
from Huaqiao University, Xiamen, China, and an
M.S. in ecology from the University of Chinese
Academy of Sciences, Beijing. His research interests
are remote sensing image segmentation and LiDAR
point cloud analysis and visualization using com-
puter vision and deep learning methods.

Sören Pirk is a professor of Computer Science
at Kiel University in Germany, where he leads the
Visual Computing and Artificial Intelligence group.
He received his Ph.D. from University of Konstanz,
Germany. Before joining the faculty of engineering,
he was a senior research scientist and manager at
Adobe Research and a Software Engineer at Google
AI.

	Introduction
	Related Work
	Overview
	Point Cloud Processing
	Forest Point Cloud to Tree Point Clouds (FPCTPC)
	Tree Point Clouds to Part Point Clouds (TPCPPC)

	Neural Ranking
	Point Cloud Embedding Network
	Nearest Neighbor Lookup
	Branch Candidate Selection

	Forest Mesh Construction
	Branch Part Connectivity Graph BG
	Set of Tree Graphs TG
	Mesh Generation

	Implementation
	Forest Data
	Neural Network Training

	Results and Validation
	Results
	Validation

	Discussion and Limitations
	Conclusions and Future Work
	References
	Appendix
	Biographies
	Xiaochen Zhou
	Bosheng Li
	Bedrich Benes
	Ayman Habib
	Songlin Fei
	Jinyuan Shao
	Sören Pirk

