
Image Extension with Contour Patch Matching and Generative
Adversarial Network

Xiaochen Zhou
zhouxiaochen@wustl.edu

Figure 1: Image extension results by our approach. The left image is the source image required to be extended and the
right image is the extended image.

Abstract

Image completion is a useful tool for image editing.
While image inpainting is a top research project in the
past few dacades and have obtain some state-of-the-art
achievements, directly applying these approaches to im-
age extension will not provide promising results. In this
work, we introduce a novel pipeline for image exten-
sion built on a patch-based methods and learning-based
methods. Our pipeline achieves strong results on im-
age extension with satisfying texture details and seman-
tical rationality. We also show the model’s ability of pa-
naroma generation.

1 Introduction
Image completion is a technique that estimates a complete
image from an input with missing pixels. This technique
can be used as automatical image editing tools such as im-
age inpainting, image extension, object removal and etc.

Althrough many approaches have been proposed for im-
age completion, such as patch-based image synthesis [1]
[2] [3] and learning-based approaches, it remains a chal-
lenge not only owing to the high resolution demand but
also the necessity for both texture and sematic rational-
ity. On this observation, we come out with a novel work
based on patch-based and learning-based methods to deal
with image extension, a harder task in image completion.

Our approach builds on image quilting [3]. Image
quilting extends the image by searching and selecting
patches from the source image, placing the selected patch
on the source image with overlapping areas, and op-
timizing the stitching boundaries to make the texture
changes smoothly. Although Image quilting approach ob-
tain charming results on source images with repeating tex-
tures, the performance on complicated images like photo-
graph is not convincing. Inspired by sparse smart con-
tour [9], where they extract the sparse contours from the
source image, save image information on the contours and

1

use these contours to reconstruct the image, our approach
extends the images on the contour domain, and then re-
construct the extended contour into RGB images.

We first extract the contour of the source image and save
the gradient information on the contour. To extend the
contour image, we select both contour patches and RGB
source patches with minimum errors on the overlapping
area as the reference, place the patch on the source image
and find a minimum error cut path through the error matrix
by dynamic programming. Then we build a generative
adversarial network for image reconstruction. We build
a coarse-to-fine unet architecture as the generator, which
takes the extended contour with image information as the
input, and generate the RGB image.

In summary, in this paper we present:

• an approach to extend the contour image relied on
reusing content in the source image.

• a neural network structure that reconstructs high-
resolution RGB images.

• a novel pipeline for high-resolution image extension
by traditional methods and deep learning.

2 Related Work
Methods for image completion can be divided into two
categories: classical methods, which use non-parametric
computer vision and texture synthesis approaches to ad-
dress the problem, and learning-based methods, which
deal with this task with parametric machine learning, gen-
erally in the form of deep convolutional neural networks.

Classical methods commonly use patch-based algo-
rithms to complete the missing area. For image inpainting,
patch match [1] helps to find matching patches from the
source image to the target image. They introduces a rapid
method to search and propagate the patches and build the
correspondence. It is efficient for image completion, while
the performance is not natural and satisfying enough. For
image extension, photo uncrop [2] takes an photograph as
an input, and selects a subset of Internet images taken near
the input photograph, and then reprojects, and composites
into a larger image around the input using the underly-
ing scene geometry. However the system is complex and
requires users interactions. Besides, the system and the
performance are depended on the related dataset instead
of the source image itself, which brings limitations for this
approach. Image quilting [3] extends the image by search-
ing and selecting patches from the source image, placing
the selected patch on the source image with overlapping
area, and optimizing the stitching boundaries by dynamic
programming. Although the performance is outstanding
on source image with repeating texture, results generated
by image quilting are not satisfying.

In recent years, learning-based approaches have
achieved great progress. The first significant learning-
based approach for image inpainting was Context Encoder
[4]. They trained an encoder-decoder network to fill in
the squared blank area in an image, and used a combina-
tion of L2 regression on pixel values and an adversarial
loss [6] as the supervised signal. [5] built up a architec-
ture with a local-global discriminator, where the global
sent the whole image as the input and the local discrimi-
nator picked the generated area for the missing part. Deep
learning methods present strong ability for image inpaint-
ing task, while extending the image from one boundary
obtains less information compared with image inpainting,
which leads to image extension much more challenging
and the approaches for image inpainting would not work
well on image extension task. Also, deep learning ap-
proaches are often trained and used datasets on specific
scene categories. They would not always do good job on
all scene categories and all types of photos. Althrough [7]
built an GAN architecture for image extension which gen-
erated promising extended results, they still take similar
architecture with image inpainting taks. The keypoint was
the new discriminator that they took advantage of from
conditional projection discriminator [8], which may boost
the performance of the image extension.

3 Proposed Approach

3.1 Overview

In our approach, we show a new pipeline that would ex-
tend the image easier and would be able to do well on
most of scene categories and all types of photos. Our ap-
proach is built based on two methods: image quilting [3]
and sparse smart contour [9]. We first extract the contour
of the input image and extend the contour, then we recon-
struct the contour into RGB image.

3.2 Image Contour Extension

3.2.1 Contour with Information

To extend the image, the first step is generating the con-
tour with image information. We first extract the contour
of the source image by canny edge detector [10], and com-
pute the gradient of the image on X and Y axis. Let us
denote c as contour and Dx and Dy as gradient on X and
Y axis respectively. Then the contour with information is
computed as:

C = c×Dx ⊕ c×Dy

where C denotes contour with information, × denotes
element-wise product and ⊕ denotes concatenating on

2

Figure 2: The architecture for the coarse-to-fine Unets

channel axis. In this case, C would shape like [X,Y, 6].
We will call this 6-channel contour.

3.2.2 Candidate Patch Pair Selection

In this section we will pick up a RGB patch and the related
6-channel patch as the candidate patch pair. We slice the
source image and the contour image into small patches
with overlapping area. The stride for slice window is 1.
We call the patch required to be extended in the original
image as target patch, and the patches selected from the
sliced image as source patches. Let us denote lrgb as the
L2 distance of the overlapping area between the selected
RGB patch and the target image patch, lC as the L2 dis-
tance of selected 6-channel contour patch and 6-channel
contour of the target patch. Besides, assuming that when
we extend the image on one axis, the patches on the same
coordinate with the source patch on the other axis could
be more semantically reasonable, we denote laxis as the
L1 distance of coordinate distance. For instance, when we
extend the target image on X axis, laxis would be com-
puted as laxis = ||Ytarget − Ysource||, where Ytarget and
Ysource denotes the Y coordinate for target patch and the
source patch. Then the loss will be:

ltotal = lrgb + αlC + γlaxis

where α and γ are the weights for lC and laxis. In this
case, we will pick up the related patch pair with the lowest
loss error as the candidate patches.

Computing L2 distance and L1 distance is time-
consuming. If the source image is large and the amount of
sliced patches is too high, the time cost for the approach
will be unacceptable. In this case, we come out with a

pre-selection method. We compute the average intensity
of the overlapping areas for both source patches and target
patches, and compute the average intensity difference as
the loss. For loss function in contour domain, we compute
the sum of the XOR of the the original 1-channel contours
for the source patch and target contour patch. The bit-wise
XOR operation can significantly accelerate the computa-
tion. The larger the sum is, the more the contour mis-
matching is from source contour and the target contour
and the worse the matching would be. We will select the
topK patches with the lowest pre-selection error, and find
the candidate patch pair through them.

3.2.3 Minimum Error Boundary Cut

We want to find the cut on the overlapping area between
the candidate patch and the source patch. This can be done
by dynamic programming.

Suppose that the source patch will be stitched on the
down side of the target patch, we need to find a hori-
zonal cut path to split the overlapping area. We compute
and sum up the L2 distance of the overlapping area in
both RGB patches and 6-channel patches and add them
together. We denote this distance as e. Then we traverse
e(i = 1..N) and compute the cumulative minimum er-
ror E for all paths. We also build a matrix P to save the
address of previous node:

Ei,j = ei,j +min(Ei−1,j−1, Ei−1,j , Ei−1,j+1)

Pi,j = argmin
y

(Ei−1,y), s.t.y ∈ {−1, 0, 1}

The minimum value of the last column of E will indicate
the end point of the path and we can trace back and find

3

the path with the minimum error. The approach for ver-
tical cut path is similar. When we have two overlapping
areas, we split the areas by two paths meet in the mid-
dle. The RGB source patch and 6-channel source patch
will be stitched to the target patch with the guidance of
the minimum error cut path in both RGB image domain
and contour domain. We recursively apply this approach
until the image is extended to the goal size.

3.3 Coarse-to-fine Unet

The architecture for image reconstruction is consisted of
two unets [11], a convolutional encoder and decoder with
skip connections between layers of the encoder and de-
coder. The architecture is shown in Figure 2.

The first network reconstruct the overall structure and
the general color of the output. The network is trained
with an L1 pixel loss between the reconstruct coarse im-
age and the ground-truth image, which leads to the low-
frequencies of the output. The second Unet introduce de-
tails and textures to the image. The input of the second
network is the combination of the coarse output from the
first Unet and 6-channel contour, and trained by L1 pixel
loss and an adversarial loss, which will bring more tex-
tures and details to the reconstructed image. When the
second Unet is under training, the weights in the first Unet
are fixed. To increase the stablility of GAN training, we
adopt progressive GAN [12] in the second Unet where
the layers for both generator and discriminator are added
gradually to the architecture. The second Unet generates
low resolution images at the beginning where only few
layers are in the generator and discriminator. When cur-
rent layers have been trained well, next new layer will be
added, and the quality and resolution of the output will be
sharpened.

The inputs for the first training are 6-channel contour
images generated from the training dataset, not the ex-
tended 6-channel contour images we generate in the previ-
ous section. When the network is well trained on training
dataset, we will finetune the network with the combina-
tion of training contour images and our extended contour
images. We call the 6-channel contours from the training
dataset “True contours” and the extended contours “fake
contours”. L1 pixel loss is still computed by ground truth
and images generated through real contours, while the dis-
criminator will distinguish whether the images are real or
fake among ground truth images, images from true con-
tours and images generated from fake contours.

b=20, o=0.5, lC=1 b=20, o=0.3, lC=1

b=18, o=0.5, lC=1 b=18, o=0.3, lC=0.25

Figure 3: Different parameters for image extension. b de-
notes size of patches, o denotes the ratio of the overlapping
area for patches, and lC denotes the weight for 6-channel
contour loss

4 Experiments

4.1 Parameters for Candidate Patch Selec-
tion

Parameter settings for the candidate patch selection can af-
fect the results of the 6-channel contour image extension.
For the selection, we would consider the size of the patch,
the ratio of the overlapping area and the whole patch and
the weight for 6-channel contour loss lC . The following
are some samples of extended images. We show the ex-
tended RGB image instead of 6-channel contour for a clear
visualization. In our experiments we set the patch size to
18, overlapping ratio to 0.3, weight for lC to 0.25. The
weight for coordinate distance laxis is 0.01.

4.2 Results for extension

In this section, we present the results for the reconstruc-
tion. Figure 4 shows the reconstruction of the images sized
as 256 × 256.The first column shows the source image.
The middle two images show the extended 6-channel con-
tour image and the RGB images in image contour exten-
sion process. The last column is the reconstructed image.
The contour provide the structure information. Then GAN
generates the rational overall structure and sharp texture

4

Figure 4: Results for image extension. The first column shows the source image. The middle two images show the
extended 6-channel contour image and the RGB images with patches copied and pasted in image contour extension
process. The last one is the reconstructed image.

details for the whole image.

We also explore our model’s ability of panorama exten-
sion. Figure 6 shows the panorama extension results. To
generate panorama images, we continue extension based
on the generated images. We use the extended 6-channel
from last extending iteration instead of extract 6-channel
contour images based on the generated image, and use
original 6-channel and RGB patches for next extension.
This helps the 6-channel contour to save more informa-

tion from the source image. For each iteration, we will
extend 64 units on one axis, such as from 256 × 256 to
256× 320. We recursively apply our model and then gen-
erate the panorama results.

5 Conclusion
In this work, we build a novel pipeline to extend the con-
tour image relied on reusing content in the source image.

5

Figure 5: Results for panaroma extension

The source image is firstly extended in contour domain
based on image quilting, and a coarse-to-fine Unet archi-
tecture is used to reconstruct high-resolution RGB im-
ages. Our approach can generate high-resolution image
with high texture and semantic rationality. Also, users can
generate panaroma images by recursively apply our model
on their images.

References
[1] Barnes C, Shechtman E, Finkelstein A, et al. Patch-

Match: A randomized correspondence algorithm for
structural image editing[C]//ACM Transactions on
Graphics (ToG). ACM, 2009, 28(3): 24.

[2] Shan Q, Curless B, Furukawa Y, et al. Photo un-
crop[C]//European Conference on Computer Vision.
Springer, Cham, 2014: 16-31.

[3] Efros A A, Freeman W T. Image quilting for texture
synthesis and transfer[C]//Proceedings of the 28th
annual conference on Computer graphics and inter-
active techniques. 2001: 341-346.

Figure 6: Comparison between image extended with
copying and pasting patches and extended from contour
and GANs. The right part of the first column are the ex-
tended area.

[4] Pathak D, Krahenbuhl P, Donahue J, et al.
Context encoders: Feature learning by inpaint-
ing[C]//Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2016: 2536-
2544.

[5] Iizuka S, Simo-Serra E, Ishikawa H. Globally and
locally consistent image completion[J]. ACM Trans-
actions on Graphics (ToG), 2017, 36(4): 1-14.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, DavidWarde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 2672–2680. Curran Associates, Inc., 2014.

[7] Krishnan D, Teterwak P, Sarna A, et al. Boundless:
Generative Adversarial Networks for Image Exten-
sion[C]//2019 IEEE/CVF International Conference
on Computer Vision (ICCV). IEEE, 10520-10529.

6

[8] Miyato T, Koyama M. cGANs with projection
discriminator[J]. arXiv preprint arXiv:1802.05637,
2018.

[9] Dekel T, Gan C, Krishnan D, et al. Sparse, smart con-
tours to represent and edit images[C]//Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018: 3511-3520.

[10] Green B. Canny edge detection tutorial[J]. Re-
trieved: March, 2002, 6: 2005.

[11] Ronneberger O, Fischer P, Brox T. U-net: Con-
volutional networks for biomedical image segmen-
tation[C]//International Conference on Medical im-
age computing and computer-assisted intervention.
Springer, Cham, 2015: 234-241.

[12] Karras T, Aila T, Laine S, et al. Progressive grow-
ing of gans for improved quality, stability, and varia-
tion[J]. arXiv preprint arXiv:1710.10196, 2017.

7

